We present a novel deep neural network architecture for representing robot experiences in an episodic-like memory which facilitates encoding, recalling, and predicting action experiences. Our proposed unsupervised deep episodic memory model 1) encodes observed actions in a latent vector space and, based on this latent encoding, 2) infers most similar episodes previously experienced, 3) reconstructs original episodes, and 4) predicts future frames in an end-to-end fashion. Results show that conceptually similar actions are mapped into the same region of the latent vector space. Based on these results, we introduce an action matching and retrieval mechanism, benchmark its performance on two large-scale action datasets, 20BN-something-something and ActivityNet and evaluate its generalization capability in a real-world scenario on a humanoid robot.
We propose CLIP-Fields, an implicit scene model that can be trained with no direct human supervision. This model learns a mapping from spatial locations to semantic embedding vectors. The mapping can then be used for a variety of tasks, such as segmentation, instance identification, semantic search over space, and view localization. Most importantly, the mapping can be trained with supervision coming only from web-image and web-text trained models such as CLIP, Detic, and Sentence-BERT. When compared to baselines like Mask-RCNN, our method outperforms on few-shot instance identification or semantic segmentation on the HM3D dataset with only a fraction of the examples. Finally, we show that using CLIP-Fields as a scene memory, robots can perform semantic navigation in real-world environments.
Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning (RL), the dominant paradigm is for an agent to amortise information that helps decision making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach for offline RL in 9x9 Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in offline RL agents.
Realistic manipulation tasks require a robot to interact with an environment with a prolonged sequence of motor actions. While deep reinforcement learning methods have recently emerged as a promising paradigm for automating manipulation behaviors, they usually fall short in long-horizon tasks due to the exploration burden. This work introduces Manipulation Primitive-augmented reinforcement Learning (MAPLE), a learning framework that augments standard reinforcement learning algorithms with a pre-defined library of behavior primitives. These behavior primitives are robust functional modules specialized in achieving manipulation goals, such as grasping and pushing. To use these heterogeneous primitives, we develop a hierarchical policy that involves the primitives and instantiates their executions with input parameters. We demonstrate that MAPLE outperforms baseline approaches by a significant margin on a suite of simulated manipulation tasks. We also quantify the compositional structure of the learned behaviors and highlight our method’s ability to transfer policies to new task variants and to physical hardware.
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
While visual imitation learning offers one of the most effective ways of learning from visual demonstrations, generalizing from them requires either hundreds of diverse demonstrations, task specific priors, or large, hard-to-train parametric models. One reason such complexities arise is because standard visual imitation frameworks try to solve two coupled problems at once: learning a succinct but good representation from the diverse visual data, while simultaneously learning to associate the demonstrated actions with such representations. Such joint learning causes an interdependence between these two problems, which often results in needing large amounts of demonstrations for learning. To address this challenge, we instead propose to decouple representation learning from behavior learning for visual imitation. First, we learn a visual representation encoder from offline data using standard supervised and self-supervised learning methods. Once the representations are trained, we use non-parametric Locally Weighted Regression to predict the actions. We experimentally show that this simple decoupling improves the performance of visual imitation models on both offline demonstration datasets and real-robot door opening compared to prior work in visual imitation.